Occurrence of gastroliths in Baurusuchus (Baurusuchidae, Mesoecrocodilia) from Adamantina Formation, Bauru Basin

Felipe Menezes de Vasconcellos
 الخمورالراسم@gmail.com
Leonardo Morato
phosleo@yahoo.com.br
Thiago da Silva Marinho
ismarinho@gmail.com
Isamar de Souza Carvalho
samgr@geologia.ufrj.br

Universidade Federal do Rio de Janeiro, Departamento de Geologia, CCMEGEO. Rio de Janeiro-RJ

The fossil record of Baurusuchidae Mesoecrocodilia in the General Salgado county and its surroundings is one of the best regarding preservation, completeness and articulation of skull and skeleton remains, including specimens that shown even the
most delicate bone structures and cartilaginous tissues. One of them, UFRJ DG 288-R, has preserved its skull and about 80% of its skeleton. During the removal of the rock matrix, on what should be the specimen's abdominal region, some weathered clasts were observed, presumably to be gastroliths, together with fragments of the gastralia. The exo liths were well-polished, angular to subrounded, and occur in a restrict cluster, where at least four pebble-sized stones are visible in the surface of the specimen. The texture and fabrics of these rock fragments differs from the surrounding matrix, presenting darker purplish tones. In thin section, one of the fragments revealed isotropic texture, with opaque minerals in abundance, of euhedric to subhedral habits. The mineralogical composition presents mainly clay minerals as weathering products; biotite and chlorite are common, being the last the result of hydration of the first. Although highly altered, the low quartz content, smectite-sized and well-formed crystals suggests maphic composition in volcanic context, possibly representing a basalt fragment. In extant Crocodyliformes, the occurrence of gastroliths is commonly associated with food processing in the stomach, diving ballast, hunger stress and/or supplementary mineral ingestion. As baurussuchids are characterized as medium to large size fully terrestrial predator/scavengers, based on skeletal data, the ballast function of gastroliths is excluded in this case. As mentioned above, extant crocodyliforms such as Caiman and Crocodylus ingest stones when under stressful conditions of lack of food, water or when in high population density. Osteoderms are one of the primary sources for calcium and a reservoir for the homeostasis. The hunger stress can be observed in the osteoderms histological cuts as an abnormal concentration of osteoclasts at its inner region, overwhelming the osteoblasts and consuming the osteocytes. The preservation of osteoderms associated with gastroliths may reveal if the stone ingestion in baurussuchids is a normal or driven by hunger behavior. The paleoenvironmental conditions dominating the Adrianiana Formation during the Late Cretaceous are considered mainly arid, marked with strong seasonality, alternating long droughts and short rainy periods, associated with flash floods events. The stressful condition created during the dry season would cause famine and mass mortality, thus forcing animals to endure or escape. The baurussuchids underwent dry seasons through behavioral responses of self-burial; common in extant Crocodyliformes taxa and here inferred from the completeness and articulation of the skeleton, in even its most delicate elements as isolated osteoderms, phalanxes and gastralia; and probably stone ingestion, although it is not possible to discard this habit as a normal, customary behavior. [Financial support provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant no 305780/2006-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Instituto Virtual de
Paleontologia/ Fundação Carlos Chagas Piho de Amparo à Pesquisa do Estado do Rio de Janeiro (IVR/FAPERJ, grant n° E--26/152,641/2006).